Transient and selectable transformation of the parasitic protist Trichomonas vaginalis.
نویسندگان
چکیده
We have developed methods to transiently and selectably transform the human-infective protist Trichomonas vaginalis. This parasite, a common cause of vaginitis worldwide, is one of the earlier branching eukaryotes studied to date. We have introduced three heterologous genes into T. vaginalis by electroporation and have used the 5' and 3' untranslated regions of the endogenous gene alpha-succinyl CoA synthetase B (alpha-SCSB) to drive transcription of these genes. Transient expression of two reporter proteins, chloramphenicol acetyltransferase (CAT) or luciferase, was detected when electroporating in the presence of 50 microg closed-circular construct. Optimal levels of expression were observed using approximately 2.5 x 10(8) T. vaginalis cells and 350 volts, 960 microFd for electroporation; however, other conditions also led to significant reporter gene expression. A time course following the expression of CAT in T. vaginalis transient transformants revealed the highest level of expression 8-21 hr postelectroporation and showed that CAT activity is undetectable using TLC by 99 hr postelectroporation. The system we established to obtain selectable transformants uses the neomycin phosphotransferase (neo) gene as the selectable marker. Cells electroporated with 20 microg of the NEO construct were plated in the presence of 50 microg/ml paromomycin and incubated in an anaerobic chamber. The paromomycin-resistant colonies that formed within 3-5 days were cultivated in the presence of drug and DNA was isolated for analyses. The NEO construct was shown to be maintained episomally, as a closed-circle, at between 10-30 copies per cell. The ability to transiently and selectably transform T. vaginalis should greatly enhance research on this important human parasite.
منابع مشابه
Chemical characterization and anti-parasitic property of essential oil of Coriandrum sativum leaf against Trichomonas vaginalis
Coriandrum sativum has been used in Iranian traditional medicine as an anti-inflammatory, antioxidant, antibacterial, and antifungal agent. The purpose of this study was to evaluate the chemical composition and anti-parasitic property of essential oil of C. sativum leaf on trophozoite of Trichomonas vaginalis. C. sativum was collected from Kermanshah city and essential oil was prepared by the C...
متن کاملConvergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase.
Lactate dehydrogenase (LDH) is present in the amitochondriate parasitic protist Trichomonas vaginalis and some but not all other trichomonad species. The derived amino acid sequence of T. vaginalis LDH (TvLDH) was found to be more closely related to the cytosolic malate dehydrogenase (MDH) of the same species than to any other LDH. A key difference between the two T. vaginalis sequences was tha...
متن کاملPrevalence of Trichomonas Vaginalis in Diabetic Females
Abstract Background and Objective: Trichomonas vaginalis is a pathogenic agent known worldwide and affects about 180 million annually. We aimed to investigate the prevalence of Trichomonas vaginalis in diabetic patients referred to diabetic research center. Material and Methods: In this descriptive-analytic study, 215 women referring to the Diabetic Center in Kermanshah Province were invest...
متن کاملSymbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis
The symbiosis between the parasitic protist Trichomonas vaginalis and the opportunistic bacterium Mycoplasma hominis is the only one currently described involving two obligate human mucosal symbionts with pathogenic capabilities that can cause independent diseases in the same anatomical site: the lower urogenital tract. Although several aspects of this intriguing microbial partnership have been...
متن کاملAcetate formation in the energy metabolism of parasitic helminths and protists.
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 9 شماره
صفحات -
تاریخ انتشار 1997